Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract It has been suggested that the visual system samples attended information rhythmically. Does rhythmic sampling also apply to distracting information? How do attended information and distracting information compete temporally for neural representations? We recorded electroencephalography from participants who detected instances of coherent motion in a random dot kinematogram (RDK; the target stimulus), overlayed on different categories (pleasant, neutral, and unpleasant) of affective images from the International Affective System (IAPS) (the distractor). The moving dots were flickered at 4.29 Hz whereas the IAPS pictures were flickered at 6 Hz. The time course of spectral power at 4.29 Hz (dot response) was taken to index the temporal dynamics of target processing. The spatial pattern of the power at 6 Hz was similarly extracted and subjected to a MVPA decoding analysis to index the temporal dynamics of processing pleasant, neutral, or unpleasant distractor pictures. We found that (1) both target processing and distractor processing exhibited rhythmicity at ∼1 Hz and (2) the phase difference between the two rhythmic time courses were related to task performance, i.e., relative phase closer to π predicted a higher rate of coherent motion detection whereas relative phase closer to 0 predicted a lower rate of coherent motion detection. These results suggest that (1) in a target-distractor scenario, both attended and distracting information were sampled rhythmically and (2) the more target sampling and distractor sampling were separated in time within a sampling cycle, the less distraction effects were observed, both at the neural and the behavioral level.more » « lessFree, publicly-accessible full text available April 24, 2026
-
In the largest and most expansive lifespan magnetoencephalography (MEG) study to date (n = 434, 6 to 84 y), we provide critical data on the normative trajectory of resting-state spontaneous activity and its temporal dynamics. We perform cutting-edge analyses to examine age and sex effects on whole-brain, spatially-resolved relative and absolute power maps, and find significant age effects in all spectral bands in both types of maps. Specifically, lower frequencies showed a negative correlation with age, while higher frequencies positively correlated with age. These correlations were further probed with hierarchical regressions, which revealed significant nonlinear trajectories in key brain regions. Sex effects were found in absolute but not relative power maps, highlighting key differences between outcome indices that are generally used interchangeably. Our rigorous and innovative approach provides multispectral maps indicating the unique trajectory of spontaneous neural activity across the lifespan, and illuminates key methodological considerations with the widely used relative/absolute power maps of spontaneous cortical dynamics.more » « less
An official website of the United States government
